Variations in Human Milk Metabolites After Gestational Diabetes: Associations with Infant Growth

Scritto il 14/05/2025
da Alice Fradet

Nutrients. 2025 Apr 26;17(9):1466. doi: 10.3390/nu17091466.

ABSTRACT

BACKGROUND/OBJECTIVES: Gestational diabetes mellitus (GDM) is a condition characterized by hyperglycemia and is associated with increased risk of obesity and diabetes in exposed children. Differences in human milk composition between women with (GDM+) and without GDM (GDM-) suggest that GDM could impact milk production and composition, potentially influencing infant growth. However, this association remains poorly understood. The objective was to study the association between GDM and human milk composition and its influence on infant growth, focusing on metabolites and bioactive molecules involved in energy metabolism.

METHODS: Using a cross-sectional design, 24 metabolites were measured by GC-MS in human milk obtained at 2 months postpartum from 20 GDM+ women and 29 GDM- women. Anthropometric measures, as well as lipid and glycemic profiles, were collected. Infant weight and length data were obtained from health records.

RESULTS: Human milk metabolites significantly differ between GDM+ and GDM- mothers, with higher levels of myristic acid, glycerol, uracil, arachidonic acid, and cholesterol in GDM+ milk (p < 0.05). Specific human milk metabolites showed distinct correlations with maternal glycemic as well as infant growth, depending on GDM status. While maternal glycemia was associated with succinate and malate in all groups, maternal glycemia was specifically correlated with valine and glutamate in GDM+ mothers. Additionally, in GDM+ women, α-ketoglutarate and glycine were negatively correlated with infant growth.

CONCLUSIONS: The results of this study suggest that GDM can influence the mother's health beyond delivery, impacting the mammary gland biology with effects on the human milk composition. Further, correlations with infant growth suggest that GDM-dependent variations in milk composition potentially influence infant growth and metabolism.

PMID:40362774 | PMC:PMC12073254 | DOI:10.3390/nu17091466