J Am Heart Assoc. 2025 May 15:e039098. doi: 10.1161/JAHA.124.039098. Online ahead of print.
ABSTRACT
BACKGROUND: Most human disease definitions, except for rare and communicable diseases, are based on symptoms in specific organs, not on causal molecular mechanisms. This limits treatments to imprecise symptomatic approaches with high numbers needed to treat. Systems medicine, instead, has a holistic approach and defines diseases in an organ-agnostic manner on the basis of associated risk genes, their encoded proteins, and protein-protein interactions. Dysregulation of such disease modules is best corrected by multitarget, synergistic network pharmacology. Here we test this principle in acute ischemic stroke, a highly unmet medical indication without any approved neuroprotective drug so far.
METHODS: We extend 3 validated risk genes, neuronal nitric oxide synthase (NOS1), NADPH oxidase 5 (NOX5), and soluble guanylate cyclase (sGC), to a single disease module. For preclinical validation, we used C57/Bl6 mice and humanized NOX5-knock-in mice because NOX5 is not present in the mouse genome despite playing a key role in early stroke. Because up to 70% of patients with stroke have diabetes or prediabetes as an aggravating comorbidity, we also induced diabetes in these mice to model the increased clinical risk for hemorrhagic transformation.
RESULTS: We found that a triple-drug combination of a NOX inhibitor, a nitric oxide synthase inhibitor, and an sGC activator reduced infarct size and, in diabetic animals, also prevented hemorrhagic transformation. Reducing each individual compound dose to subthreshold levels still resulted in full protection when combined, typical for supra-additive network pharmacology. To examine clinical safety, 3 drugs, either marketed for sGC or repurposed for nitric oxide synthase and NADPH oxidase, were administered to healthy volunteers in a phase I trial.
CONCLUSIONS: Our data establish that a mechanism-based network pharmacology approach is effective and clinically safe, warranting a currently ongoing first-in-class neuroprotective phase II interventional trial.
REGISTRATION: URL: https://clinicaltrials.gov/study/NCT05762146?term=repo-stroke&rank=1; Unique Identifier: NCT05762146.
PMID:40371623 | DOI:10.1161/JAHA.124.039098